| 银杏科技有限公司旗下技术文档发布平台 | |||
| 技术支持电话 | 0379-69926675-801 | ||
| 技术支持邮件 | Gingko@vip.163.com | ||
| 版本 | 日期 | 作者 | 修改内容 | 
|---|---|---|---|
| V1.0 | 2019-02-24 | gingko | 初次建立 | 
1.在主界面选择File–>New Project   或者直接点击ACCEE TO MCU SELECTOR  
 2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置
在搜索栏的下面,提供的各  种查找方式,可以选择芯片内核,型号,等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32H750IBKx。
2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置
在搜索栏的下面,提供的各  种查找方式,可以选择芯片内核,型号,等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32H750IBKx。
 3.配置RCC,使用外部时钟源
3.配置RCC,使用外部时钟源
 4.时基源选择SysTick
4.时基源选择SysTick
 5.将PA10,PI1,PI2,PI3设置为GPIO_Output
5.将PA10,PI1,PI2,PI3设置为GPIO_Output
 6.引脚模式配置
6.引脚模式配置
 
 7.设置串口
7.设置串口
 8.在NVIC Settings一栏使能接收中断
8.在NVIC Settings一栏使能接收中断
 9.配置ADC
9.配置ADC
 
 10.时钟源设置,选择外部高速时钟源,配置为最大主频
10.时钟源设置,选择外部高速时钟源,配置为最大主频
 
 11.工程文件的设置, 这里就是工程的各种配置 我们只用到有限几个,其他的默认即可  IDE我们使用的是 MDK V5.27
11.工程文件的设置, 这里就是工程的各种配置 我们只用到有限几个,其他的默认即可  IDE我们使用的是 MDK V5.27
 12.点击Code Generator,进行进一步配置
12.点击Code Generator,进行进一步配置
 
13.然后点击GENERATE CODE 创建工程
 创建成功,打开工程。
创建成功,打开工程。
ADC主要参数有以下几点:
int main(void) { HAL_Init(); SystemClock_Config(); i2c.initialize(); axp152.initialize(); axp152.set_dcdc1(3500);//[ARM & FPGA BK1/2/6 &OTHER] axp152.set_dcdc2(1200);//[FPGA INT & PLL D] axp152.set_aldo1(2500);//[FPGA PLL A] axp152.set_dcdc4(3300);//[POWER_OUTPUT] axp152.set_dcdc3(3300);//[FPGA BK4][Adjustable] axp152.set_aldo2(3300);//[FPGA BK3][Adjustable] axp152.set_dldo1(3300);//[FPGA BK7][Adjustable] axp152.set_dldo2(3300);//[FPGA BK5][Adjustable] MX_GPIO_Init(); MX_USART2_UART_Init(); MX_ADC1_Init(); MX_ADC3_Init(); usart2.initialize(115200); while (1) { if(systick._500ms_flag == 1){ systick._500ms_flag = 0; LED_ON; my_adc.read(0); my_adc.read_mux(); usart2.printf("\x0c");//清屏 usart2.printf("\033[1;32;40m");//设置终端字体为绿色 usart2.printf("Hello,I am iCore4T!\r\n\r\n"); //打印ADC的值 usart2.printf("[V ] %4.2fV\r\n",my_adc.value[0] * 6); usart2.printf("[I ] %3.0fmA\r\n",my_adc.value[5] / 2* 1000.); usart2.printf("[3.3V ] %4.2fV\r\n",my_adc.value[7] * 2); usart2.printf("[2.5V ] %4.2fV\r\n",my_adc.value[4] * 2); usart2.printf("[1.2V ] %4.2fV\r\n",my_adc.value[6]); usart2.printf("[BK3 ] %4.2fV\r\n",my_adc.value[2] * 2); usart2.printf("[BK4 ] %4.2fV\r\n",my_adc.value[1] * 2); usart2.printf("[BK5 ] %4.2fV\r\n",my_adc.value[3] * 2); usart2.printf("[BK7 ] %4.2fV\r\n",my_adc.value[8] * 2); LED_OFF; } } }
//定义74HC4051片选管脚 #define SEL_A_ON HAL_GPIO_WritePin(GPIOI, SEL_A_Pin, GPIO_PIN_SET) #define SEL_A_OFF HAL_GPIO_WritePin(GPIOI, SEL_A_Pin, GPIO_PIN_RESET) #define SEL_B_ON HAL_GPIO_WritePin(GPIOI, SEL_B_Pin, GPIO_PIN_SET) #define SEL_B_OFF HAL_GPIO_WritePin(GPIOI, SEL_B_Pin, GPIO_PIN_RESET) #define SEL_C_ON HAL_GPIO_WritePin(GPIOI, SEL_C_Pin, GPIO_PIN_SET) #define SEL_C_OFF HAL_GPIO_WritePin(GPIOI, SEL_C_Pin, GPIO_PIN_RESET) //选择测量BK4时片选脚状态 #define CHANNEL_0_ON SEL_C_OFF;\ SEL_B_OFF;\ SEL_A_OFF //选择测量BK3时片选脚状态 #define CHANNEL_1_ON SEL_C_OFF;\ SEL_B_OFF;\ SEL_A_ON //选择测量BK5时片选脚状态 #define CHANNEL_2_ON SEL_C_OFF;\ SEL_B_ON;\ SEL_A_OFF //选择测量2.5V时片选脚状态 #define CHANNEL_3_ON SEL_C_OFF;\ SEL_B_ON;\ SEL_A_ON //选择测量输入电流时片选脚状态 #define CHANNEL_4_ON SEL_C_ON;\ SEL_B_OFF;\ SEL_A_OFF //选择测量1.2V时片选脚状态 #define CHANNEL_5_ON SEL_C_ON;\ SEL_B_OFF;\ SEL_A_ON //选择测量3.3V时片选脚状态 #define CHANNEL_6_ON SEL_C_ON;\ SEL_B_ON;\ SEL_A_OFF //选择测量BK7时片选脚状态 #define CHANNEL_7_ON SEL_C_ON;\ SEL_B_ON;\
void MX_ADC1_Init(void) { ADC_MultiModeTypeDef multimode = {0}; ADC_ChannelConfTypeDef sConfig = {0}; hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV16; //16分频 hadc1.Init.Resolution = ADC_RESOLUTION_16B; //ADC转换分辨率16位 hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE; //非扫描模式 hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV; //关闭 EOC 中断 hadc1.Init.LowPowerAutoWait = DISABLE; //自动低功耗关闭 hadc1.Init.ContinuousConvMode = DISABLE; //关闭连续转换 hadc1.Init.NbrOfConversion = 1; //1个转换在规则序列中 hadc1.Init.DiscontinuousConvMode = DISABLE; //禁止不连续采样模式 hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START; //软件触发 hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; //禁止触发检测 hadc1.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR; //存到DR寄存器 hadc1.Init.Overrun = ADC_OVR_DATA_PRESERVED; //溢出保留上次转换数据 hadc1.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; //位数不左移 hadc1.Init.OversamplingMode = DISABLE; //关闭过采样 if (HAL_ADC_Init(&hadc1) != HAL_OK) { Error_Handler(); } multimode.Mode = ADC_MODE_INDEPENDENT; //独立模式 if (HAL_ADCEx_MultiModeConfigChannel(&hadc1, &multimode) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_16; //通道16 sConfig.Rank = ADC_REGULAR_RANK_1; //第 1 个序列 sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; //采样时间 sConfig.SingleDiff = ADC_SINGLE_ENDED; //单端输入 sConfig.OffsetNumber = ADC_OFFSET_NONE; //不选择偏移序号 sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK) { Error_Handler(); } void MX_ADC3_Init(void) { ADC_ChannelConfTypeDef sConfig = {0}; hadc3.Instance = ADC3; hadc3.Init.ClockPrescaler = ADC_CLOCK_ASYNC_DIV16; hadc3.Init.Resolution = ADC_RESOLUTION_16B; hadc3.Init.ScanConvMode = ADC_SCAN_DISABLE; hadc3.Init.EOCSelection = ADC_EOC_SINGLE_CONV; hadc3.Init.LowPowerAutoWait = DISABLE; hadc3.Init.ContinuousConvMode = DISABLE; hadc3.Init.NbrOfConversion = 1; hadc3.Init.DiscontinuousConvMode = DISABLE; hadc3.Init.ExternalTrigConv = ADC_SOFTWARE_START; hadc3.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc3.Init.ConversionDataManagement = ADC_CONVERSIONDATA_DR; hadc3.Init.Overrun = ADC_OVR_DATA_PRESERVED; hadc3.Init.LeftBitShift = ADC_LEFTBITSHIFT_NONE; hadc3.Init.OversamplingMode = DISABLE; if (HAL_ADC_Init(&hadc3) != HAL_OK) { Error_Handler(); } sConfig.Channel = ADC_CHANNEL_1; sConfig.Rank = ADC_REGULAR_RANK_1; sConfig.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; sConfig.SingleDiff = ADC_SINGLE_ENDED; sConfig.OffsetNumber = ADC_OFFSET_NONE; sConfig.Offset = 0; if (HAL_ADC_ConfigChannel(&hadc3, &sConfig) != HAL_OK) { Error_Handler(); } }
void sort(unsigned short int a[], int n) { int i, j, t; //元素从小到大排列 for (i = 0; i < n - 1; i++) { for (j = 0; j < n - i - 1; j++) { if (a[j] > a[j + 1]) { t = a[j]; a[j] = a[j + 1]; a[j + 1] = t; } } } } int read(int channel) { int i; unsigned long int temp = 0; unsigned short int data[50]; ADC_ChannelConfTypeDef channel_config; int channel_remap[2] = {ADC_CHANNEL_16,ADC_CHANNEL_1};//ADC1,16通道 channel_config.Channel = channel_remap[channel]; //通道选择 channel_config.Offset = 0; //偏移量为0 channel_config.Rank = ADC_REGULAR_RANK_1; //第一个序列 channel_config.SamplingTime = ADC_SAMPLETIME_1CYCLE_5; //采样时间 channel_config.SingleDiff = ADC_SINGLE_ENDED; //单端输入 channel_config.OffsetNumber = ADC_OFFSET_NONE; //不选择偏移序号 for(i = 0;i < 50;i ++){ if(channel == 0){ //如果通道为0,则使能ADC1 HAL_ADC_ConfigChannel(&hadc1,&channel_config); HAL_ADC_Start(&hadc1); while(!__HAL_ADC_GET_FLAG(&hadc1,ADC_FLAG_EOC)); data[i] = HAL_ADC_GetValue(&hadc1); }else if(channel == 1){ //如果通道为1,则使能ADC3 HAL_ADC_ConfigChannel(&hadc3,&channel_config); HAL_ADC_Start(&hadc3); while(!__HAL_ADC_GET_FLAG(&hadc3,ADC_FLAG_EOC)); data[i] = HAL_ADC_GetValue(&hadc3); } } sort(data,50); for(i = 20;i < 30;i++){ //取ADC排序后的中间10位数值 temp += data[i]; } temp = temp / 10; //取ADC平均值 if(channel == 0){ //读取ADC1的值 my_adc.value[channel] = temp * ADC_REF / 65536; } return temp; } static int read_mux(void) { //打开通道并读取ADC的值 CHANNEL_0_ON; my_adc.value[1] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_1_ON; my_adc.value[2] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_2_ON; my_adc.value[3] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_3_ON; my_adc.value[4] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_4_ON; my_adc.value[5] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_5_ON; my_adc.value[6] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_6_ON; my_adc.value[7] = my_adc.read(1) * ADC_REF / 65536; CHANNEL_7_ON; my_adc.value[8] = my_adc.read(1) * ADC_REF / 65536; return 0; }