目录

银杏科技有限公司旗下技术文档发布平台
技术支持电话0379-69926675-801
技术支持邮件Gingko@vip.163.com
版本 日期 作者 修改内容
V1.0 2020-03-24 gingko 初次建立













STM32CubeMX教程四十九——UART_IAP_ARM实验_APP



1.在主界面选择File–>New Project 或者直接点击ACCEE TO MCU SELECTOR 2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置 在搜索栏的下面,提供的各 种查找方式,可以选择芯片内核,型号,等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32H750IBKx。 3.配置RCC,使用外部时钟源 4.时基源选择SysTick 5.将PA10,PB7,PB8设置为GPIO_Output 6.引脚模式配置 7.时钟源设置,选择外部高速时钟源,配置为最大主频 8.工程文件的设置, 这里就是工程的各种配置 我们只用到有限几个,其他的默认即可 IDE我们使用的是 MDK V5.27 9.点击Code Generator,进行进一步配置

10.然后点击GENERATE CODE 创建工程 创建成功,打开工程。



STM32CubeMX教程四十九——UART_IAP_ARM实验_IAP

1.在主界面选择File–>New Project 或者直接点击ACCEE TO MCU SELECTOR 2.出现芯片型号选择,搜索自己芯片的型号,双击型号,或者点击Start Project进入配置 在搜索栏的下面,提供的各 种查找方式,可以选择芯片内核,型号,等等,可以帮助你查找芯片。本实验选取的芯片型号为:STM32H750IBKx。 3.配置RCC,使用外部时钟源 4.时基源选择SysTick 5.将PA10,PB7,PB8设置为GPIO_Output,PH7设置为GPIO_Input 6.引脚模式配置 7.配置串口 在NVIC Settings一栏使能接收中断 引脚配置 8.配置QUADSPI 9.时钟源设置,选择外部高速时钟源,配置为最大主频 10.工程文件的设置, 这里就是工程的各种配置 我们只用到有限几个,其他的默认即可 IDE我们使用的是 MDK V5.27 11.点击Code Generator,进行进一步配置

12.然后点击GENERATE CODE 创建工程 创建成功,打开工程。



实验四十九:UART_IAP_ARM实验——更新升级STM32

一、 实验目的与意义

  1. 了解STM32的IAP结构。
  2. 了解STM32的IAP特征。
  3. 掌握STM32的IAP的使用方法。
  4. 掌握UART使用方法。
  5. 掌握KEIL MDK 集成开发环境使用方法。

二、 实验设备及平台

  1. iCore4T 双核心板。
  2. iCore4T 扩展底板。
  3. JLINK(或相同功能)仿真器。
  4. Micro USB线缆。
  5. Keil MDK 开发平台。
  6. STM32CubeMX开发平台。
  7. 装有WIN XP(及更高版本)系统的计算机。

三、 实验原理

1.IAP简介

2.QSPI简介

3.QSPI命令序列

(1) 指令阶段
(2) 地址阶段
(3) 交换字节阶段
(4) 空指令周期阶段
(5) 数据阶段

四、 IAP实验程序

1.主函数

int main(void)
{
    int i = 0;
    int flash_id;
 
    CPU_CACHE_Enable();
    HAL_Init();
    SystemClock_Config();
    i2c.initialize();
    axp152.initialize();
    axp152.set_dcdc1(3500);//[ARM & FPGA BK1/2/6 &OTHER]
    axp152.set_dcdc2(1200);//[FPGA INT & PLL D]
    axp152.set_aldo1(2500);//[FPGA PLL A]
    axp152.set_dcdc4(3300);//[POWER_OUTPUT] 
    axp152.set_dcdc3(3300);//[FPGA BK4][Adjustable]
    axp152.set_aldo2(3300);//[FPGA BK3][Adjustable]
    axp152.set_dldo1(3300);//[FPGA BK7][Adjustable]
    axp152.set_dldo2(3300);//[FPGA BK5][Adjustable]
    MX_GPIO_Init();
    MX_QUADSPI_Init();
    MX_USART2_UART_Init();
 
    LED_ON;
    BSP_QSPI_Init();
    W25QXX_ExitQPIMode();
    W25QXX_Reset(); 
    usart2.initialize(115200);
    usart2.printf("\x0c");           //清屏
    usart2.printf("\033[1;32;40m"); 
    HAL_UART_Receive_IT(&huart2, (unsigned char *)&usart2.receive_data,1);
 
    LED_ON;
    if(ARM_KEY_STATE == KEY_UP){     //按键松开状态直接跳向应用程序
        goto start;
    }
    while(1){                        //按键按下,进入升级状态
        if(i++ == 10000000){
            //串口发送字符C
            usart2.send_byte('C');
            i = 0;
        }       
        if(usart2.receive_buffer[0] == SOH){
            break;
 
        }
    }
    while (1)
    {
        if(usart2.receive_ok_flag == 1){
            usart2.receive_ok_flag = 0;
            xmodem.process();
 
            if(usart2.receive_buffer[0] == EOT){
                usart2.send_byte(ACK);  
                while(1);
            }   
        }           
  }
 
    start:
    /* Initialize w25q64 */
    W25QXX_ExitQPIMode();
    W25QXX_Reset();
    flash_id = BSP_QSPI_FLASH_ReadID();
    W25QXX_EnterQPIMode();  
 
    if(flash_id == 0xEF4017){
        usart2.printf("FLASH(W25Q64) init success!\r\n");
        usart2.printf("Jump to Flash!\r\n");
    }else{
        usart2.printf("FLASH(W25Q64) init fail!\r\n");
        while(1){
            HAL_Delay(50);
            LED_ON;
            HAL_Delay(50);
            LED_OFF;
        }
    }   
 
    QSPI_EnableMemoryMappedMode(&hqspi);
  CPU_CACHE_Disable();
  SysTick->CTRL = 0;
  JumpToApplication = (pFunction) (*(__IO uint32_t*) (APPLICATION_ADDRESS + 4));
  __set_MSP(*(__IO uint32_t*) APPLICATION_ADDRESS);
  JumpToApplication();  
}

2.ASCII控制字符

#define SOH  0x01   //Start of Heading (报头开始)
#define STX  0x02   //Start of Text (正文开始)
#define EOT  0x04   //End of Transmission (传输结束)
#define ACK  0x06   //Acknowledge (确认)
#define NAK  0x15   //Negative Acknowledge (否认)
#define CTRLZ 0x1A  //Substitute (替换)

3.Xmodem.process函数

static int process(void)
{
    unsigned char xbuff[140]; /* 128 for XModem  + 3 head chars + 2 crc + nul */    
    int i = 0;
    int j = 0;
    unsigned char * p;
 
    if(usart2.receive_buffer[0] == SOH){//接收到有效数据帧头
        xbuff[0]=usart2.receive_buffer[0];
 
        for(i=0;i<133;i++){//接收一帧数据
            xbuff[i+1]=usart2.receive_buffer[i+ 1];
        }
 
        if((xbuff[1]==(uint8_t)~xbuff[2])&&((packetno % 256) == xbuff[1])//包序号无误
            &&(crc16.check(&xbuff[3], 128) == (xbuff[131] << 8 | xbuff[132]))){//CRC校验无误
            if(packetno == 1){
                p = (unsigned char*)&xbuff[3];
 
                //擦除1MB Flash 用于存放app code
                for(j = 0;j < 256;j ++){
                    BSP_QSPI_Erase_Block(j*4096);
                }
                BSP_QSPI_Write(p,0,128);
                packetno++;
                usart2.send_byte(ACK);
                return 0;
            }
            packetno++;
            p = (unsigned char*)&xbuff[3];
            BSP_QSPI_Write(p,(packetno - 2) * 128,128);
            usart2.send_byte(ACK);
        }
        else{//要求重发
            led_trade();
        }
    }
    return 0;
}

4.CRC校验

static const unsigned short crc16tab[256]= {
0x0000,0x1021,0x2042,0x3063,0x4084,0x50a5,0x60c6,0x70e7,
0x8108,0x9129,0xa14a,0xb16b,0xc18c,0xd1ad,0xe1ce,0xf1ef,
0x1231,0x0210,0x3273,0x2252,0x52b5,0x4294,0x72f7,0x62d6,
0x9339,0x8318,0xb37b,0xa35a,0xd3bd,0xc39c,0xf3ff,0xe3de,
0x2462,0x3443,0x0420,0x1401,0x64e6,0x74c7,0x44a4,0x5485,
0xa56a,0xb54b,0x8528,0x9509,0xe5ee,0xf5cf,0xc5ac,0xd58d,
0x3653,0x2672,0x1611,0x0630,0x76d7,0x66f6,0x5695,0x46b4,
0xb75b,0xa77a,0x9719,0x8738,0xf7df,0xe7fe,0xd79d,0xc7bc,
0x48c4,0x58e5,0x6886,0x78a7,0x0840,0x1861,0x2802,0x3823,
0xc9cc,0xd9ed,0xe98e,0xf9af,0x8948,0x9969,0xa90a,0xb92b,
0x5af5,0x4ad4,0x7ab7,0x6a96,0x1a71,0x0a50,0x3a33,0x2a12,
0xdbfd,0xcbdc,0xfbbf,0xeb9e,0x9b79,0x8b58,0xbb3b,0xab1a,
0x6ca6,0x7c87,0x4ce4,0x5cc5,0x2c22,0x3c03,0x0c60,0x1c41,
0xedae,0xfd8f,0xcdec,0xddcd,0xad2a,0xbd0b,0x8d68,0x9d49,
0x7e97,0x6eb6,0x5ed5,0x4ef4,0x3e13,0x2e32,0x1e51,0x0e70,
0xff9f,0xefbe,0xdfdd,0xcffc,0xbf1b,0xaf3a,0x9f59,0x8f78,
0x9188,0x81a9,0xb1ca,0xa1eb,0xd10c,0xc12d,0xf14e,0xe16f,
0x1080,0x00a1,0x30c2,0x20e3,0x5004,0x4025,0x7046,0x6067,
0x83b9,0x9398,0xa3fb,0xb3da,0xc33d,0xd31c,0xe37f,0xf35e,
0x02b1,0x1290,0x22f3,0x32d2,0x4235,0x5214,0x6277,0x7256,
0xb5ea,0xa5cb,0x95a8,0x8589,0xf56e,0xe54f,0xd52c,0xc50d,
0x34e2,0x24c3,0x14a0,0x0481,0x7466,0x6447,0x5424,0x4405,
0xa7db,0xb7fa,0x8799,0x97b8,0xe75f,0xf77e,0xc71d,0xd73c,
0x26d3,0x36f2,0x0691,0x16b0,0x6657,0x7676,0x4615,0x5634,
0xd94c,0xc96d,0xf90e,0xe92f,0x99c8,0x89e9,0xb98a,0xa9ab,
0x5844,0x4865,0x7806,0x6827,0x18c0,0x08e1,0x3882,0x28a3,
0xcb7d,0xdb5c,0xeb3f,0xfb1e,0x8bf9,0x9bd8,0xabbb,0xbb9a,
0x4a75,0x5a54,0x6a37,0x7a16,0x0af1,0x1ad0,0x2ab3,0x3a92,
0xfd2e,0xed0f,0xdd6c,0xcd4d,0xbdaa,0xad8b,0x9de8,0x8dc9,
0x7c26,0x6c07,0x5c64,0x4c45,0x3ca2,0x2c83,0x1ce0,0x0cc1,
0xef1f,0xff3e,0xcf5d,0xdf7c,0xaf9b,0xbfba,0x8fd9,0x9ff8,
0x6e17,0x7e36,0x4e55,0x5e74,0x2e93,0x3eb2,0x0ed1,0x1ef0
};
 
static unsigned short int check(const unsigned char *buffer, int len)
{
    register int counter;
    register unsigned short crc = 0;
 
    for( counter = 0; counter < len; counter++)
        crc = (crc<<8) ^ crc16tab[((crc>>8) ^ *(char *)buffer++)&0x00FF];
 
    return crc;
}

5.QSPI FLASH退出QPI模式

void W25QXX_ExitQPIMode(void)
{   
    QSPI_CommandTypeDef cmd;
 
    cmd.InstructionMode = QSPI_INSTRUCTION_4_LINES;
    cmd.Instruction = W25X_ExitQPIMode;
 
    cmd.AddressMode = QSPI_ADDRESS_NONE;
    cmd.AddressSize = QSPI_ADDRESS_24_BITS;
    cmd.Address = 0x00; 
 
    cmd.DataMode = QSPI_DATA_NONE;
    cmd.NbData = 0;
 
    cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
    cmd.AlternateBytesSize = 0;
    cmd.AlternateBytes = 0x00;
 
    cmd.DummyCycles = 0;
 
    cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
    cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
    cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
    HAL_QSPI_Command(&hqspi, &cmd, 100);
 
    w25qxx_mode = W25QXX_MODE_SPI;
}

6.QSPI FLASH进入QPI模式

void W25QXX_EnterQPIMode(void)
{
    uint8_t dat;
 
    QSPI_CommandTypeDef cmd;
 
    dat = W25QXX_ReadSR(2); //先读出状态寄存器2的原始值
    if ((dat & QE_MASK) == 0x00) //QE位未使能
    {
        W25QXX_WriteEnable(1); //写使能
        dat |= QE_MASK; //使能QE位
        W25QXX_WriteSR(2, dat); //写状态寄存器2
    }
 
    cmd.InstructionMode = QSPI_INSTRUCTION_1_LINE;
    cmd.Instruction = W25X_EnterQPIMode;
 
    cmd.AddressMode = QSPI_ADDRESS_NONE;
    cmd.AddressSize = QSPI_ADDRESS_24_BITS;
    cmd.Address = 0x00; 
 
    cmd.DataMode = QSPI_DATA_NONE;
    cmd.NbData = 0;
 
    cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
    cmd.AlternateBytesSize = 0;
    cmd.AlternateBytes = 0x00;
 
    cmd.DummyCycles = 0;
 
    cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
    cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
    cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
    HAL_QSPI_Command(&hqspi, &cmd, 100);
 
    w25qxx_mode = W25QXX_MODE_QPI;
 
    cmd.InstructionMode = QSPI_INSTRUCTION_4_LINES;
    cmd.Instruction = W25X_SetReadParameters;
    cmd.DataMode = QSPI_DATA_4_LINES;
    cmd.NbData = 1;
    dat = 0x03 << 4; //设置P4&P5=11,8个dummy clocks,104MHz
 
W25QXX_WriteEnable(1);
    if (HAL_QSPI_Command(&hqspi, &cmd, 100) == HAL_OK)
    {
        HAL_QSPI_Transmit(&hqspi, &dat, 100);
    }
}
 

7.QSPI FLASH复位

void W25QXX_Reset(void)
{
    QSPI_CommandTypeDef cmd;
    if (w25qxx_mode)
    {
        cmd.InstructionMode = QSPI_INSTRUCTION_4_LINES;
    }
    else
    {
        cmd.InstructionMode = QSPI_INSTRUCTION_1_LINE;
    }
    cmd.Instruction = W25X_EnableReset;
 
    cmd.AddressMode = QSPI_ADDRESS_NONE;
    cmd.AddressSize = QSPI_ADDRESS_24_BITS;
    cmd.Address = 0;
 
    cmd.DataMode = QSPI_DATA_NONE;
    cmd.NbData = 0;
 
    cmd.AlternateByteMode = QSPI_ALTERNATE_BYTES_NONE;
    cmd.AlternateBytesSize = 0;
    cmd.AlternateBytes = 0x00;
    cmd.DummyCycles = 0;
    cmd.DdrMode = QSPI_DDR_MODE_DISABLE;
    cmd.DdrHoldHalfCycle = QSPI_DDR_HHC_ANALOG_DELAY;
    cmd.SIOOMode = QSPI_SIOO_INST_EVERY_CMD;
 
    W25QXX_WaitBusy();
    if (HAL_QSPI_Command(&hqspi, &cmd, 100) == HAL_OK)
    {
        cmd.Instruction = W25X_ResetDevice;
        HAL_QSPI_Command(&hqspi, &cmd, 100);
    }
}

五、 APP实验程序

1.主函数

#define FLASH_ADDRESS     (uint32_t)0x90000000
int main(void)
{
  HAL_Init();
  SystemClock_Config();
  //配置中断向量偏移
  SCB->VTOR = FLASH_ADDRESS; /* Vector Table Relocation in Extren FLASH */
 
  i2c.initialize();
  axp152.initialize();
  axp152.set_dcdc1(3500);//[ARM & FPGA BK1/2/6 &OTHER]
  axp152.set_dcdc2(1200);//[FPGA INT & PLL D]
  axp152.set_aldo1(2500);//[FPGA PLL A]
  axp152.set_dcdc4(3300);//[POWER_OUTPUT]
  axp152.set_dcdc3(3300);//[FPGA BK4][Adjustable]
  axp152.set_aldo2(3300);//[FPGA BK3][Adjustable]
  axp152.set_dldo1(3300);//[FPGA BK7][Adjustable]
  axp152.set_dldo2(3300);//[FPGA BK5][Adjustable]
  MX_GPIO_Init();
 
  while (1)
  {
    //LED闪烁
    LED_ON;
    HAL_Delay(300);
    LED_OFF;
    HAL_Delay(300);
  }
}

六、 实验步骤

  1. 把仿真器与iCore4T的SWD调试口相连(直接相连或者通过转接器相连);
  2. 把iCore4T通过Micro USB线与计算机相连,为iCore4T供电;
  3. 打开Keil MDK 开发环境,并打开APP实验工程, 编译连接后,将 Objects 文件夹下的 app.hex 文件拷贝至 hex_to_bin 文件夹下,将其转化成 app.bin 文件(方法:将app.hex 拉至 HEX2BIN 应用程序);
  4. 打开 Keil MDK 开发环境,并打开 IAP 实验工程;
  5. 按下 ARM-KEY 将烧写 Bootloader 程序到 iCore4T 上;
  6. 打开 Putty,通过串口发送 app.bin 文件(方法见附录)
  7. 也可以进入Debug 模式,单步运行或设置断点验证程序逻辑。

七、 实验现象

将 app.bin 文件通过串口发送,重新上电ARM-LED 灯闪烁,即 ARM 更新升级成功。

附录: 1. iCore4T供电后,打开计算机—-属性—-设备管理—-端口 2.打开PuTTY 3. 打开之后,进入以下界面,点击send按钮,选择app.bin文件路径(\hex_to_bin\app.bin)